Multi-Argument Classification for Semantic Role Labeling
نویسندگان
چکیده
This paper describes a Multi-Argument Classification (MAC) approach to Semantic Role Labeling. The goal is to exploit dependencies between semantic roles by simultaneously classifying all arguments as a pattern. Argument identification, as a pre-processing stage, is carried at using the improved Predicate-Argument Recognition Algorithm (PARA) developed by Lin and Smith (2006). Results using standard evaluation metrics show that multiargument classification, achieving 76.60 in F1 measurement on WSJ 23, outperforms existing systems that use a single parse tree for the CoNLL 2005 shared task data. This paper also describes ways to significantly increase the speed of multi-argument classification, making it suitable for real-time language processing tasks that require semantic role labeling.
منابع مشابه
برچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملMulti-Predicate Semantic Role Labeling
The current approaches to Semantic Role Labeling (SRL) usually perform role classification for each predicate separately and the interaction among individual predicate’s role labeling is ignored if there is more than one predicate in a sentence. In this paper, we prove that different predicates in a sentence could help each other during SRL. In multi-predicate role labeling, there are mainly tw...
متن کاملRevisiting Arabic Semantic Role Labeling using SVM Kernel Methods
As a critical language, there is huge potential for the usefulness of an Arabic Semantic Role Labeling (SRL) system. This task involves two subtasks: predicate argument boundary detection and argument classification. Based on the innovations of Diab, Moschitti, and Pighin (2007) in the field of Arabic Natural Language Processing (NLP), SRL in particular, we are currently developing a system for...
متن کاملA Semantic Feature for Verbal Predicate and Semantic Role Labeling Using SVMs
This paper shows that semantic role labeling is a consequence of accurate verbal predicate labeling. In doing so, the paper presents a novel type of semantic feature for verbal predicate labeling using a new corpus. The corpus contains verbal predicates, serving as verb senses, that have semantic roles associated with each argument. Although much work has been done using feature vectors with ma...
متن کاملTowards Robust Semantic Role Labeling
Most research on semantic role labeling (SRL) has been focused on training and evaluating on the same corpus in order to develop the technology. This strategy, while appropriate for initiating research, can lead to over-training to the particular corpus. The work presented in this paper focuses on analyzing the robustness of an SRL system when trained on one genre of data and used to label a di...
متن کامل